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Abstract. Wavelet transform theory is an efficient multiscale formalism for analysing local
structures. This philosophy, when incorporated within quantum mechanics, demands that there be
a naturally corresponding, localized quantization theory, in contrast to the variational formalisms
in the literature. Through the recently established equivalency formalism between moment
quantization theory and continuous wavelet transform theory (Handy C R and Murenzi R 1998
J. Phys. A: Math. Gen.31 9897 and Handy C R and Murenzi R 1999J. Phys. A: Math. Gen.32
8111), we argue that a new quantization prescription can be defined in which the kinetic energy
term is set to zero at the (complex) turning points (or turning hypersurfaces). We establish this, both
for one- and two-dimensional systems, and clarify the relevancy of multiscale wavelet analysis in
this quantization process.

1. Introduction

Nearly two decades ago, Handy (1981) emphasized the importance of a moment quantization
strategy in defining an efficient multiscale formalism for analysing (scale related) transient
effects in singular perturbation/strong coupling problems.

Moment quantization (MQ) refers to all methods for solving the configuration space
quantum system by transforming it into an extensive (non-local) representation involving
the moments,µ(p) ≡ ∫

dx xp9(x), of the (unknown) wavefunction,9, as represented
in the works by Blankenbeckleret al (1980), Killingbecket al (1985), Handy and Bessis
(1985), Handyet al (1988a, b), and Fernandez and Ogilvie (1993). This perspective led to
fundamentally new energy-quantization methods, based on the classicmoment problemwithin
pure mathematics (Shohat and Tamarkin 1963), for solving difficult, singular perturbation-type
problems, such as the quadratic Zeeman effect for strong magnetic fields (Handy and Bessis
1985, Handyet al 1988a, b).

More recently, a significiant vindication of the MQ philosophy has been achieved through
Handy and Murenzi’s (HM) work establishing the equivalence between MQ and continuous
wavelet transform (CWT) analysis (HM 1998a, b). This unified analysis leads to the multiscale
generation of the configuration space wavefunction.

Consistent with Handy’s original formulation, the unification of MQ and CWT required
the use of the generalized moments,µa,b(p) ≡

∫
dx xpS( x

a
)9(x + b), dependent on the scale

and translation variables,a andb, respectively. Thescaling function, S, is generally arbitrary,
although limiting it to the formS(x) = e−Q(x), whereQ(x) is an appropriate polynomial,
leads to certain advantages.
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Thescaling transformof a function,F(x), is defined asSF(a, b) ≡ 1
ν

∫
dx
a
S( x−b

a
)F (x),

whereν ≡ ∫ dx S(x). Thus the scaled and translated moments,µa,b(p), are essentially linear
superpositions of the scaling transform for the functions{xp9(x)|p > 0}.

In a subsequent work HM extended the equivalence between MQ and CWT to a particular
(exact) discretization of CWT, referred to as DCWT (HM 1999). As is well known, CWT
and its discretized (a-adic) formulation, DCWT, define efficient, simultaneous space–scale,
or time–frequency, localized representations of a given signal or wavefunction (Daubechies
1991). They are well suited for studying transient effects, a characteristic feature of (strong
coupling) singular perturbation-type problems.

For future reference, in this work we shall consider wavelet transforms (Grossmann and
Morlet 1984),

W9(a, b) ≡ 1√
a

∫
dxW

(
x − b
a

)
9(x) (1)

where themother waveletis given byW(x) = N ∂Ixe−Q(x), I > 1, andQ(x) is a suitable
polynomial. For such cases, we have that the wavelet transform corresponds to a finite
superposition of the scaled and translated moments:

W9(a, b) =
P∑
p=0

C(a, b;p)µa,b(p) (2)

where the coefficient functions are readily obtainable.
One of the more impressive results of the MQ-CWT/DCWT equivalency formalism is the

straightforward derivation of thesignal-waveletinversion formula(s). For the continuous case
(CWT) we have (HM 1998b)

9(b) = 1

ν

∫ +∞

0

da

a
5
2

∫ +∞

−∞
dξ D

(
ξ − b
a

)
W9(a, ξ) (3)

whereD corresponds to a suitable dual function which must satisfy, in terms of the Fourier
transforms, a three-way relation involving the scaling function and the mother wavelet

−k∂kŜ(k) =
√

2πŴ(k)D̂(k). (4)

For real configurations, we also have∫
db9(b)2 =

∫ +∞

0

∫ +∞

−∞

da dξ

νa
5
2

D9(a, ξ)W9(a, ξ) (5)

where

D9(a, ξ) =
∫

dbD
(
ξ − b
a

)
9(b). (6)

For the discrete case (DCWT), the corresponding signal-wavelet inversion formula is (HM
1999)

9(b) = 1

ν

+∞∑
l=−∞

+∞∑
j=−∞

D
(
b − f a0jρ

l − δl [b]
f a0ρl

)
× 1√

ρl
W9(ρl, f a0jρ

l + δl [b]). (7)

For this case, one assumes an (a-adic) discretization of the scale (a0ρ
l) and translation (f a0ρ

lj )
parameter space (ρ > 1). In addition, at each scale value, the point of reconstruction,b,
assumes a decomposition

b = nl [b]f a0ρ
l + δl [b] (8)

wherenl [b] is the optimal integer translation value, andδl [b] the ensuing remainder term.
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The dual function, also satisfies a three-way relation of the form

(Ŝ(k)− Ŝ(ρk)) =
[ ∞∑
j=−∞

D(j)eifjk
]
Ŵ
(
k

a0

)
(9)

where the scaling function is different from that in the CWT case.
The preceding signal (9)-wavelet reconstruction formulae suggest a multiscale, pointwise,

reconstruction ansatz at each point,b. This is better appreciated within the context of their
derivation, as reviewed in section 2. This interpretation defines the basic motivation for this
work: to determine the corresponding local quantization formalism that naturally complements
the multiscale, pointwise reconstruction character inherent to the above inversion formulae.
We argue in this paper that a (complex) turning point quantization strategy is the most relevant.

This work is an attempt at better understanding the significance of CWT/DCWT in
quantum mechanics. We are not satisfied with its present, widespread, use as only providing a
convenient localized basis on which to implement variational calculations (Choet al1993, Wei
and Chou 1996, and Tymczak and Wang 1997). Based on the underlying MQ formalism, we
believe that the real importance of CWT/DCWT is in its implicit emphasis on understanding
the contribution of all (complex) turning points (hypersurfaces) to the quantization problem.

In this work we limit our analysis to the bound state problem for linear quantum operators,
as defined in terms of the Schrodinger Hamiltonian representation

H9(x) = E9(x) (10)

whereH ≡ −ε∂2
x + V (x), for rational fraction potentials (which includes many important

physical processes)

V (x) = PN(x)
PD(x)

(11)

wherePN(x) ≡
∑T

j=0N(j)x
j andPD(x) ≡

∑B
j=0D(j)x

j . In terms of their respective
degrees, we definems + 1 = Max{T ,B}. The multidimensional extension of the above is
implicitly assumed as well, and will be used in a specific case later on. The extension of the
present formalism to scattering states will be discussed in a future work.

The turning points,τ`, satisfy

V (τ`(E)) = E (12)

for 0 6 ` 6 ms . Thus, there arems + 1, (complex) turning point root solutions, for arbitrary
values of the energy parameter variable,E.

In terms of the scaling transform representation the (equivalent) Schrodinger equation
problemPD(x)(H− E)9(x) = 0, is transformed into

SH9(a, b) ≡
∫

dx S
(
x − b
a

)
PD(x)(H− E)9(x) = 0 (13)

for all a andb values. Since the scaling function becomes (up to a factor) the Dirac measure
in the zero-scale limit, the scaling transform equation is equivalent to the original Schrodinger
equation.

In principle, takingSH9(a, b) = 0 at fixeda, b does not guarantee that9 will be a
solution to the Schrodinger equation. If all the moments of a ‘well behaved’ function are zero,
µ(p) = ∫ dx xpf (x) = 0, thenf (x) = 0. Accordingly, we should also consider expanding
the above set of constraints by working with∫

dx (x − b)p
(
S
(
x − b
a

)
PD(x)(H− E)9(x)

)
= 0 (14)

for arbitraryp > 0.
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This set of relations is demanding that9 satisfy the Schrodinger equation both locally
(a → 0) and globally (extensively), with regards to thep dependence. The former is an
attribute of configurations space, whereas the latter corresponds to momentum space. Thus, a
simultaneous space–scale quantization is implicitly defined by these relations.

These integral equations generate theµa,b(p) moment equation, which is equivalent to
the configuration space Schrodinger equation.

For systems of the above type, if the scaling function is of the formS(x) = e−Q(x), where
Q(x) is an appropriate polynomial (i.e.Q(0) = 0), the scaled (a > 0) and translated (|b| <∞)
moments of the (unknown) wavefunction (α ≡ 1

a
)

µα,b(p) =
∫

dx xpe−Q(αx)9(x + b) (15)

convert the scaling tranform moment expressions into an infinite set of coupled moment
equations of the form

µα,b(p) =
ms∑
`=0

ME,α,b(p, `)µα,b(`) (16)

p > 0, explained subsequently (Handy and Bessis 1985, Handyet al 1988a, b).
All of the scaled and translated moments,µα,b(p), depend on the first 1 +ms moments.

The latter in turn, satisfy a finite, linear, set of coupled differential moment equations (CDME)
of first order in the inverse scale variable,α:

∂α
−→µ α,b =M(α, b, E, ε)−→µ α,b (17)

where−→µ α,b ≡ (µα,b(0), . . . , µα,b(ms)). TheM(α, b, E, ε) matrix is readily obtainable,
and depends on the energy parameter,E. These equations reveal how the large-scale
(a = ∞, α = 0) structure impacts the local behaviour (a = 0, α = ∞) of the problem.
As such, they define an important multiscale representation (HM 1996, 1997, 1998a, b, 1999).

As mentioned previously, many important wavelet transforms can be written as
superpositions of the above moments (i.e.{µα,b(`)|0 6 ` 6 ms}). Thus we can regard
the CDME equations as thewavelet transformequation of the Schrodinger equation.

The scaled and translated moments have several important properties. For physical
solutions, they are regular inb (i.e.µα,b(p) =

∫
dx (x − b)pe−Q(

x−b
a
)9(x)). As long as the

asymptotic form ofQ(x) does not grow faster than the corresponding JWKB representation
(i.e.9(x) = e−T (x), and Lim

|x|→∞
Q(x)

T (x)
= const), then they are also analytic atα = 0.

In general, as required by the underlying dependence on9, we restrict the form of the
‘initial’, α = 0, configuration to be an arbitrary polynomial, inb, of the form

µ0,b(`) =
∑̀
j=0

(
`

j

)
(−b)`−jµ0,0(j) (18)

where, 06 ` 6 ms ,
(
`

j

)
≡ `!

(`−j)!j ! , and theµ0,0(j) are arbitrary.

From the above polynomial representation, we see that the infinite-scale (a = ∞, α = 0)
moments are linear superpositions of the infinite-scale, zero-translation momentsµ0,0(`) ≡
µ(`), which are referred to as themissing moments. We shall also use the notationµ` ≡ µ(`).

There are three distinct ways of solving the CDMEs in equation (17).

(1) In all of the previous studies by HM (1996, 1997, 1998a, b, 1999), they utilized MQ
methods different from those presented here (i.e. the eigenvalue moment method (EMM),
Handyet al(1988a, b)) in order to determine the physical values for the energy and missing
moments (and in turn theµ0,b(`)). These physical values are then used to integrate the
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initial value problem defined by the CDME, up to sufficiently small scales,1
α
= a → 0.

This procedure led to the pointwise recovery (reconstruction) of the physical wavefunction
based on using either: (i) the asymptotic moment relations

Lim
α→∞α

1+pµα,b(p) = ν(p)9(b) (19)

(providedν(p) ≡ ∫ dy ype−Q(y) 6= 0); or, (ii) reconstructing9(b) through the relevant
signal-wavelet inversion formula which depends on the computedµα,b(p).

Although this approach has proven to be effective for many strong coupling/singular
perturbation problems, in the case of extremely singular problems the use of EMM theory
may be too slowly converging since large moment expansion orders are required. We can
circumvent this difficulty by incorporating the quantization procedure within the analysis of
the CDME. This is the focus of approaches 2 and 3, described below.

(2) One can study the CDME directly and generatems + 1 independent solutions, for eachE:

∂αB(j)`1
(α, b, E, ε) =

ms∑
`2=0

M`1,`2(α, b, E, ε)B
(j)

`2
(α, b, E, ε) (20)

where 06 j, `1 6 ms , and

B(j)` (0, b, E, ε) =

(
`

j

)
(−b)`−j , for ` > j

0, if ` < j .
(21)

The general CDME solution is given by the superposition

µα,b(`) =
ms∑
j=0

µjB(j)` (α, b, E, ε) (22)

for arbitraryµj . As previously noted, a large class of wavelet transforms,W9(a, b), can
be written as a superposition of theµα,b(`). As argued in this work, ifas is a sufficiently
small-scale value, we can then quantize by imposing the condition

W9(as, τ`(E)) = 0 (23)

at each of thems + 1 (complex) turning points. For mother wavelets of the form
W(x) = ∂2

xe−Q(x), the as → 0 limit of the above quantization condition becomes
∂2
x9(τ`(E)) = 0.

Since there are as many turning points as there are missing moments, the quantization
condition defined by equation (23) leads to a set ofms +1 linear equations inms +1 unknowns,
resulting in a determinantal equation for determining the physical energy roots. This (exact)
approach, is discussed in a forthcoming work (Handy and Brooks 2000). It involves the
numerical determination of the functionsB(j)` , which is beyond the scope of this paper. Also,
the extension of this formalism to the multidimensional case, although possible, poses a difficult
analytical problem which has not been solved as yet.

Despite the above difficulties, it is possible to analytically implement the essence of the
above procedure (in a manner extendable to the multidimensional case as well) through a
non-orthogonal basis representation described in the works by Tymczak, Japaridze, Handy,
and Wang (TJHW 1998a, b). This is the focus of this work.
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(3) In the two recent works by TJHW (1998a, b) they showed that the wavefunction can be
expressed in terms of the representation

9(x) =
∞∑
n=0

An(E,µ0, . . . , µms )(−∂x)nR(x) (24)

(to be referenced as9TJHW) for some appropriatereference function, R(x). TheAn
coefficients are linearly dependent on the missing moments,µ`. The TJHW quantization
condition,AN−`(E,µ0, . . . , µms ) = 0, forN →∞ and 06 ` 6 ms , yielded impressive
results for a wide assortment of one- and two-dimensional quantum problems.

In this paper, we investigate the suitability of the TJHW representation from the perspective
of moment-wavelet turning point quantization, as defined below.

One important feature of the TJHW representation is that because it is derived from
a resummation of the Fourier space power series expansion, it is intrinsically a multiscale
expansion as well. Therefore, the scaled and translated power moments,µα,b(p) =∫

dx xpe−Q(αx)9TJHW(x + b), should satisfy the CDME at large scale values (a → ∞) for a
wide range of energy parameter values. It is only for the physical solution that the moments
of the9TJHW representation will satisfy the CDME for all scale values (06 a <∞).

Let

9(N)(x) ≡
N∑
n=0

An(E,µ0, . . . , µms )(−∂x)nR(x) (25)

define theN th-order TJHW representation. Because the{(−∂x)nR(x)} define a non-
orthogonal complete basis set, the TJHW representation is complete and therefore capable
of accurately generating the true solution, for some sufficiently large order,N . Instead
of the TJHW quantization conditions, we investigate the effectiveness of the turning point
quantization (TPQ) conditions (utilizing mother wavelets of the formW(x) = N ∂2

xe−Q(x))

W9(N)(as, τ`(E)) = 0 (26)

for 06 ` 6 ms , and some suitably smallas .
The legitimacy of this quantization condition is established in section 4. There we argue

that if the mother wavelet is modelled after the form of the kinetic energy operator, then the
signal-wavelet inversion formula converges fastest to9(b) at the turning points,b = τ`(E).
At the turning points, the kinetic energy term is zero. Since the wavelet transform converges
asymptotically to the kinetic energy term (up to a scale-dependent factor), in the zero-scale
limit, the motivation for equation (26) becomes readily apparent.

The TJHW solution to the TPQ condition in equation (26) is denoted by9(N)
as
(x). Most of

the following discussion adopts a general formalism with respect toas ; however, in practice,
we will usually takeas = 0. For this case, the TPQ condition simply becomes

∂2
x9

(N)(τ`(E)) = 0. (27)

Due to the linear dependence of theAn on theµ, the TPQ condition corresponds to a set of
ms + 1 linear equations, yielding a determinantal equation for approximating the physical root
solutions,E(N)r (as), and the corresponding missing moments,{µ(N)` (as)}. The energy roots
corresponding to the caseas = 0 are denoted byE(N)r ≡ E(N)r (0).

Imposing the TPQ conditions not only yields highly accurate estimates for the physical
energies, but also (non-converging) spurious, unphysical values as shown in figure 1, for
N = 40 (refer to table 1, for theE(N)r (0) estimates corresponding toN = 20, 30, 40). In order
to discriminate between the physical and unphysical solutions, one could check the accuracy
of the generated TPQ configuration solution by measuring the extent to which it satisfies
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Figure 1. TPQ rootsW9(as, τ`(E)) = 0.

Table 1. Results forV (x) = −5x2 + x4 (* physical roots).

N Egr N Egr N Egr

20 −5.551 8649 30−5.827 0575 40−5.887 4918
−3.410 7938* −4.452 3274 −5.048 7046
−3.357 3571 −3.410 1404* −3.503 0771
−1.623 2814 −2.540 7367 −3.410 1428*
−0.259 2104 −1.315 0128 −1.708 8318

−0.187 3868 −0.679 9603
−0.112 5330

the Schrodinger equation. However, within the present multiscale analytical framework, one
should establish consistency with the Schrodinger equation, scale by scale (proceding from
the largest scale). The fact that the CDME equations are a space–scale representation of the
Schrodinger equation becomes important in this regard.

The moments generated from the TPQ solution9(N)
as
(x), will satisfy the CDME equations

up to a critical scale,ac(as, N). For the physical solution, particularly asN →∞, one expects
ac ≈ as asas → 0. In our calculations, particularly for the double-well quartic anharmonic
oscillator, at orderN = 40, we find that the TPQ estimates for the physical ground state
energy yieldsas → 0 andac → 0.4. Nevertheless, the TPQ generated wavefunction satisfies
the Schrodinger equation very well. Likewise, for the spurious roots (also atN = 40),
we find that even asas → 0, the critical scale valueac stays essentially unchanged at
ac = O(0.8). While these numerical behaviours are consistent with the expected behaviour,
we prefer a more emphatic criterion for discriminating between the physical and unphysical
TPQ roots.

At finite order,N , let us decompose the TPQ solution (physical or unphysical) into the
representation

9(N)
as
(x) = R(x) +A(x) (28)

where9(N)
as

is the TJHW configuration obtained by imposing the TPQ condition at scaleas .
The configurationA(x) denotes all the terms or integrand, from the DCWT or CWT signal-
wavelet inversion formulae, respectively, corresponding to scalea > ac (i.e. the projection
of 9(N)

as
onto the wavelet space with scalea > ac); whereasR is the remainder. TheA(x)

configuration will satisfy the CDME equations up to scaleac (i.e. will be a solution to the
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Schrodinger equation up to that scale). The remainder configuration,R(x), will be made up
of wavelet space terms corresponding to scale valuesa < ac.

If the configuration9(N)
as
(x) is to correspond to a physical state, thenas should be close

to ac. By ‘close’, we mean that the remainder configuration,R(x), must be small. One way of
assessing this is to compare the wavelet transformW9(N)

as
(a, τ ) (for fixedas , and any relevant

turning point,τ ) for a ∈ (0, ac) anda ∈ [ac,∞). We emphasize thatA corresponds to the
projection onto the wavelet space defined by scale values in the second interval, [ac,∞).

If W9(N)
as
(a, τ ) assumes significant values on the interval(0, ac), as compared with the

interval [ac,∞), it indicates thatR(x) is likewise significant and thus9(N)
as
(x) does not

represent a good (approximate) solution to the Schrodinger equation (since it significantly
differs fromA(x), which is a solution to the Schrodinger equation, to scaleac).

If W9(N)
as
(a, τ ) assumes no significant values on(0, ac), as compared with its values on

[ac,∞), then both9(N)
as

andA(x) are sufficiently close to each other (i.e.R(x) is negligible),
and thus9(N)

as
(approximately) solves the Schrodinger equation, to scaleac.

The preceding analysis defines a process for distinguishing between physical and
unphysical TPQ solutions. We use this as an effective criteria in discriminating between
the physical and unphysical solutions.

In the following sections we present a more comprehensive analysis of the preceding
formalism, together with numerical examples for several representative problems in one and
two space dimensions. Only the double-well quartic anharmonic oscillator is discussed in
detail. We first define the necessary moment-wavelet expressions.

2. The wavelet transform

In this section we clarify why the preceding signal-wavelet inversion formulae really
correspond to a multiscale analysis of the local behaviour of9. Consider the scaling transform

S9(a, b) ≡ 1

ν

∫ +∞

−∞

dx

a
e−Q(

x−b
a
)9(x) (29)

whereS(x) ≡ e−Q(x), ν = ∫
dx e−Q(x) 6= 0, 9 is a physical (wavefunction) configuration,

anda andb are arbitrary scale and translation variables, respectively. In the zero-scale limit,
we recover the wavefunction

Lim
a→0
S9(a, b) = 9(b). (30)

ThusS9(a, b) represents the multiscale dependence of9 at the scale valuea.
Through some simple substitutions we can transformS9(a, b) into the signal (9)-wavelet

inversion formula (HM 1998a, b)

S9(a, b) = 1

ν

∫ +∞

a

dav

av
5
2

∫
dξ D

(
ξ − b
av

)
W9(av, ξ) (31)

where the wavelet transform,W9, is given by

W9(av, ξ) = 1√
av

∫
dxW

(
x − ξ
av

)
9(x). (32)

The kernel,W, corresponds to a suitablemother wavelet, whereD is its dual. The mother
wavelet, dual function, and scaling function,S(x) ≡ e−Q(x), constrain each other through
relations given in terms of their Fourier transforms (i.e.Ŵ(k) ≡ 1√

2π

∫
dx e−ikxW(x))

−k∂kŜ(k) =
√

2πŴ(k)D̂(k). (33)

We stress that the scaling transform in equation (29), which corresponds to an averaging
sampling process, is equivalent to integrating over all scale values of the signal-wavelet
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inversion formula (av > a). An analogous result also holds for the discrete case, discussed
below.

From the MQ perspective, an exact discretization of the above two-dimensional integration
can be readily obtained. Two versions of this are (HM 1999)

S9(ρL, b) = 1

ν

+∞∑
j=−∞

+∞∑
l=L
D
(
b − jρl − δl [b]

ρl

)
× 1√

ρl
W9(ρl, jρl + δl [b]) (34)

and

S9(ρL, b) = 1

ν

+∞∑
j=−∞

+∞∑
l=L

D(j)√
(ρl)

W9(ρl, b − jρl) (35)

whereW9(ρl, b − jρl) = 1√
(ρl )

∫
dxW( x−(b−jρ

l)

ρl
)9(x). Note thatρ > 1, L → −∞,

and Lim
L→−∞

S9(ρL, b) = 9(b). The expressionδl [b], for arbitrary b, is defined by the

decompositionb = nl [b]ρl + δl [b], wherenl is the optimal integer, at scale indexl, satisfying
the relation. We have Lim

l→−∞
δl [b] = 0, and Lim

l→+∞
δl [b] = b.

TheW mother-wavelet andD satisfy (for a different scaling function to that given in
equation (33))

Ŝ(k)− Ŝ(ρk) =
+∞∑

j=−∞
[D(j)eijk]Ŵ(k). (36)

In this paper we will adopt the dyadic (ρ = 2) scale, 2l , and translation,j2l , values, as
well as the Mexican hat wavelet and dual functions

WMH(x) = −NMH∂2
xe−

x2

2 (37)

D(j) = NMH(1− j2)e−
j2

2 (38)

whereNMH ≡ 2

3
1
2 π

1
4
, andν = 3.44. The preceeding discretized wavelet transform analysis is

referred to as (a-adic) discrete continuous wavelet transform (DCWT) analysis.
From the above formalism, it is clear that either CWT or DCWT defines a multiscale

formulation (involving the contributions from all scales) for understanding the local structure
of the configuration at pointb. Because of this interpretation, the application of CWT/DCWT to
quantum mechanics should be focused on identifying important localized features of a physical
solution which serve to determine it. The most natural localized features of a wavefunction are
its characteristics near the turning points (or hypersurfaces). The focus on turning points is, in
fact, quite natural within both MQ and CWT analyses. We show this in the next two sections.

3. Turning points and moment quantization

The original motivation for MQ analysis (Handy 1981) was that it provided a representation
in which kinetic energy term perturbation (i.e. singular perturbation theory) was manifestly
more regular than that provided by a configuration space analysis. Thus consider the time-
independent, Schrodinger equation problem

−ε∂2
x9(x) + V (x)9(x) = E9(x) (39)

whereε is a ‘small’ kinetic energy perturbation parameter,V (x) is the potential function, and
E the energy. In this paper we limit the potential function to be a (multidimensional) rational
fraction

V (x) =
∑T

j=0N(j)x
j∑B

j=0D(j)x
j
. (40)
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Within configuration space, the singular perturbation character ofε-expansions makes
it an undesirable representation. That is, the order of the Schrodinger differential equation
abruptly changes forε = 0 and 0+. This is not the case if one transforms the Schrodinger
equation into a moment representation defined by

µ(p) =
∫

dx xp9(x) (41)

wherep > 0.
The correspondingmoment equation(i.e. multiply both sides of equation (39) by

xp
∑B

j=0D(j)x
j and perform the necessary integration by parts)

−ε
( B∑
j=0

D(j)(p + j)(p + j − 1)µ(p + j − 2)

)

+
T∑
j=0

N(j)µ(p + j) = E
( B∑
j=0

D(j)µ(p + j)

)
(42)

for p > 0, is of effective orderms + 1 = Max{T ,B}, since the initialization (i.e. missing)
moments{µ(`)|06 ` 6 ms}must be specified before all the other moments can be determined.
The energy,E, appears as a variable parameter.

The order of the finite-difference moment equation does not change for any value ofε. This
is one immediate manifestation of the relevance of such moment representations in addressing
singular perturbation problems corresponding to kinetic energy perturbation. In a moments’
representation, such expansions are more regular than in a configuration representation.

The linear dependence of the{µ(p)|p > ms} moments, with respect to the missing
moments, can be expressed through the relation

µ(p) =
ms∑
`=0

ME(p, `)µ(`) (43)

where the readily obtainableME-coefficients satisfyME(`1, `2) = δ`1,`2.
In the zero-order limit,ε = 0, the moment equation has the exact solution

µ0(p) =
ms∑
`=0

A`τp` (E) (44)

where theA` are arbitrary, and theτ`(E) correspond to all thems + 1 turning point roots of
the defining equation

V (τ`(E)) = E (45)

for 0 6 ` 6 ms . We emphasize that we regard the turning points as known (computable)
functions of the energy variable. Furthermore, we will be working with all of them. Some of
these may be complex functions, depending on the potential.

The zero-order moment solution corresponds to an atomic distribution defined by

9ε=0(x) =
ms∑
`=0

A`δ(x − τ`(E)). (46)

We have implicitly derived all the preceding relations assuming that the moments
correspond to the physical configuration. This is because the unphysical solutions to the
Schrodinger equation do not admit finite moments. However, within the context of the moment
equation, we see that for arbitraryE one can generate a moment space solution which is finite.
Clearly then, the moment equation defines a finite extension of the problem, even for the
unphysical regime.
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There are many quantization methods based on the use of the moment equation
representation. The works by Handy and Bessis (1985), and Handyet al(1988a, b) emphasized
the importance of this representation with regards to strong coupling/singular perturbation-
type problems. These methods generated very good estimates for the discrete state energies;
however, they did not pursue the issue of wavefunction reconstruction.

The recent works by HM (1996, 1997, 1998a, b, 1999) focused on this problem. Central to
their analysis is the use of the generalized, scale- and translation-dependent, moments (α ≡ 1

a
)

µα,b(p) =
∫

dx xpe−Q(αx)9(x + b) (47)

whereQ(x) =∑2N
n=04(n)x

n,4(0) = 0, and4(2N) > 0.
The function8(x) ≡ e−Q(αx)9(x + b) satisfies the corresponding Schrodinger equation

−ε(∂2
x + 2αQ′(αx)∂x + α2[Q′′(αx) + (Q′(αx))2])8(x) + V (x + b)8(x) = E8(x). (48)

So long as

Lim
|x|→∞

Q′(x)√
V (x)

= const (49)

the order of the moment equation satisfied by theµα,b(p) (i.e. µα,b(p) =
∫

dx xp8(x)) is
unchanged,ms + 1. This leads to the representation

µα,b(p) =
ms∑
`=0

Mα,b,E,ε(p, `)µα,b(`) (50)

(similarly derived as in equation (42)) whereMα,b,E,ε(`1, `2) = δ`1,`2, as before.
In general,

∂αµα,b(p) = −
∫

dx xp+1Q′(αx)e−Q(αx)9(x + b). (51)

From the assumed polynomial structure ofQ, as well as the dependence of all the moments on
the (initialization) moments{µα,b(`)|06 ` 6 ms} a finite, coupled, set of first-order equations
in the inverse scale variable,α, is obtained:

∂α


µα,b(0)
·
·
·

µα,b(ms)

 =

M0,0(α, b, E, ε) . . .M0,ms (α, b, E, ε)

· · ·
· · ·
· · ·

Mms,0(α, b, E, ε) . . .Mms,ms (α, b, E, ε)



µα,b(0)
·
·
·

µα,b(ms)

 . (52)

TheM(α, b, E, ε) matrix is readily obtainable. It is also regular inb.
So long as equation (49) is satisfied, the CDME (i.e. equation (52)) is analytic atα = 0.

Viewed as an initial value problem, as indicated earlier, the specification of the physical energy,
E, and infinite-scale moments,{µ0,b(`)|06 ` 6 ms}, leads to the asymptotic recovery of the
wavefunction through the relations

Lim
α→∞α

`+1+σ`µa,b(`) = ν(` + σ`)

σ`!
∂
σ`
b 9(b) (53)

whereν(`) ≡ ∫ dy y`e−Q(y), andν(` + σ`) is the first non-zero moment starting from order`

(i.e.ν(`) = ν(` + 1) = · · · = ν(` + σ` − 1) = 0, andν(` + σ`) 6= 0).
As outlined in the previous section, these asymptotic relations represent the integration

(summation) of the signal-wavelet inversion formulae over all scale and translation values.
If equation (49) is not satisfied, the asymptotic relations still hold; however, the coupled

moment differential equations are singular atα = 0 and require other methods for their analysis
(i.e. the ‘Bohr’ atom, as investigated in HM (1997)). These complications also arise in the
extension of the present formalism to the case of scattering problems.
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TheM(α, b, E, ε) matrix is regular inε. Settingε = 0, the integration of equation (52)
will yield the atomic distribution in equation (46), for arbitraryE, through the aboveα→∞
asymptotic relations (Handy and Brooks 2000).

The above analysis betrays the importance of turning points within a MQ formalism.
Turning points are also relevant within CWT analysis.

4. Turning points and continuous wavelet transforms

Within CWT theory, turning points are important because they define theb values where the
pointwise convergence of equation (52) is the fastest. That is, in terms of the scaling function
definition in equation (29), upon performing the change of variablesy = x−b

a
, and expanding

the ensuing configuration9(ay + b), with respect toa, we obtain

S9(a, b) = 1

ν

∞∑
q=0

aqν(q)

q!
∂
q

b 9(b) (54)

whereν(q) ≡ ∫
dx xqe−Q(x) andν = ν(0). If we assumeν(0) 6= 0 andν(1) = 0 (i.e.

symmetric scaling function), then

S9(a, b) = 9(b) + a2 ν(2)

2ν(0)
∂2
b9(b) + O(a3). (55)

Furthermore, at the turning point values,τ`, we have (i.e.∂2
b9(τ`) = 0)

S9(a, τ`) = 9(τ`) + O(a3). (56)

Thus, the convergence to the wavefunction, by the multiscale configuration in equation (29),
is fastest at the turning points, in the zero-scale limit. Clearly, this also holds for any other
inflection point; however, we do not know these (zeros of the wavefunction) as functions of
the energy. This is why we restrict our analysis only to the turning points.

An important alternate way of expressing the above is in terms of the wavelet transform
itself. Performing the same change of variables anda-expansion on equation (1), with respect
to mother wavelets of the formW(x) = N ∂2

xe−Q(x) (because of the second-order nature of the
Schrodinger equation), one obtains

W9(a, b) = √a
∞∑
q=0

aqω(q)

q!
∂
q

b 9(b) (57)

whereω(q) ≡ N ∫ dy yq∂2
ye−Q(y), yielding (i.e.ω(0) = ω(1) = 0)

W9(a, b) = √a
(
a2ω(2)

2
∂2
b9(b) + O(a3)

)
. (58)

The zero-scale limit will always be zero, Lim
a→0

W9(a, b) = 0, for anyb value. However, at

the turning points (i.e.∂2
b9(τ`) = 0), the convergence to zero is much faster

W9(a, τ`) = O(a
7
2 ) a→ 0. (59)

Therefore, at moderately small-scale values,as , we have

W9(as, τ`) ' 0. (60)

The rapid convergence to zero, exhibited by the wavelet transform at the turning points,
makes them suitable for defining a TPQ strategy as defined by the conditions in equation (23)
or (26).
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5. Turning point quantization

Although the essence of the TPQ procedure has been described in the previous sections
(particularly in the introduction), in this section we want to summarize the conspiring factors
that argue in favour of its natural role as the one and only logical quantization prescription
within a moment-wavelet analytical framework.

Firstly, we have established that for mother wavelets modelled after the kinetic energy
operator (of the multidimensional) Schrodinger equation, the wavelet transform converges
to zero fastest at all of the turning points. The manifestly non-wavelet equivalent to this is
the expression in equation (19). Such moment limits converge fastest to the wavefunction
(pointwise) at the turning points. We established that such limits are identical to the signal-
wavelet inversion/reconstruction formulae in equations (30), (31).

Secondly, for any one-dimensional, rational fraction (bound state) potential Schrodinger-
Hamiltonian, the number of turning points is identical to the number of missing moments,
1 +ms .

Finally, for a large assortment of mother wavelet kernels, the wavelet transform is linearly
dependent on the missing moments.

It then follows that the TPQ condition in equation (23) is the natural choice which can
readily produce a determinantal equation for finding the energy root values.

In addition, because of the underlying dependence on a moment formulation, and the
proven effectiveness of MQ methods in addressing strongly coupled singular perturbation-type
problems, the TPQ condition should be effective for these types of systems as well. Indeed,
MQ analysis, particularly as developed in Handyet al EMM analysis (1988a, b), corresponds
to a conformally invariant variational procedure (HM 1998b) capable of yielding impressive
results, as in the case of the notoriously difficult (and highly singular) quadratic Zeeman effect
for strong magnetic fields (Handyet al 1988b).

Given all the above, the most natural implementation of the TPQ condition is to explicitly
solve the CDME relations directly. We outline this procedure below, for completeness. It
provides an important contrast to the procedure developed in the following sections, based on
the TJHW representation for the wavefunction.

We should emphasize that the manifestly wavelet-dependent TPQ condition in
equation (23) is really minimally dependent on wavelet analysis. Afterall, what equation (23)
represents is an approximation to the kinetic energy condition at the turning points.

As previously noted, the works by HM generated the wavefunction configuration by
regarding the CDME,∂α−→µ α,b = M(α, b, E, ε)−→µ α,b, as an initial value problem dependent
on the infinite-scale (α = 0) moment relations

µ0,b(`) =
∑̀
j=0

(
`

j

)
(−b)`−jµ(j) (61)

whereµ(j) ≡ µ0,0(j), and

(
`

j

)
= `!

(`−j)!j ! . Through moment equation based quantization

methods (Handy and Bessis 1985, Handyet al 1988a, b), they were able to determine the
physical energy and missing moment values, enabling the integration of the CDME; thereby
leading to the pointwise recovery of the wavefunction through equation (19).

We can express the general solution to the CDME as

−→µ α,b = G(α, b, E, ε)−→µ (62)

−→µ = (µ(0), . . . , µ(ms)). The generating matrix,G, is computable, for arbitraryE.
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Since, in many cases, the wavelet transform is a superposition of the (missing) moments

W9(a, b) =
ms∑
`=0

C`(α, b,E, ε)µα,b(`) (63)

(involving readily determinable coefficients,C`) we can make the appropriate substitution and
obtain a linear relation between the wavelet transform and the (infinite-scale, zero-translation)
missing moments:

W9(a, b) =
ms∑
`=0

K`(α, b, E, ε)µ(`) (64)

where

K`(α, b, E, ε) =
ms∑
`v=0

C`v (α, b, E, ε)G`v,`(α, b, E, ε). (65)

Given that there are as many turning points as there are missing moments, a TPQ strategy
is identifiable upon imposing equation (23). The pertinent equations are (i.e.αs = 1

as
)

ms∑
`2=0

K`2(αs, τ`1(E),E, ε)µ(`2) = 0 (66)

or

det(1(as, E, ε)) = 0 (67)

where

1`1,`2(as, E, ε) = K`2(αs, τ`1(E),E, ε). (68)

There is an important, recently discovered, result (Handy and Brooks 2000), that
dramatically clinches the need for the inclusion of a wavelet basis expansion in the above
formalism. It turns out that the CDME equations, for anyE value, and any starting
(infinite-scale, zero-translation) missing moment values,−→µ , will always converge (as given
by equation (19)) to solutions to the configuration-space Schrodinger equation (physical or
unphysical). Therefore, equation (23), will always hold, for anyE, since both bounded and
unbounded solutions to the Schrodinger equation have turning points (where the kinetic energy
term is always zero). Thus, if equation (63) is used exclusively within a CDME-TPQ context,
then equation (67) will not generate physical energy values, because it is satisfied by anyE

value.
What is required is another version of equation (63) that associates bounded configurations

for both unphysical and physicalE values. However, this is exactly what the DCWT
representation provides. Thus, for an appropriately truncated DCWT representation
(equation (7),f = a0 = 1) we have

9̃(b) ≡
∑
l∈L

∑
j∈J
D
(
b − jρl − δl [b]

ρl

)
× 1√

ρl
W9(ρl, jρl + δl [b]). (69)

We can express the wavelet transform factor,W9(ρl, jρl + δl [b]), in terms of the
representation in equation (64). However, it is the wavelet transform of9̃(b), at scaleas ,
which must be used in imposing the TPQ condition:W9̃(as, τ`(E)) = 0. Excellent results
have been obtained through such a procedure. The details are presented in the forthcoming
work by Handy and Brooks (2000).

As indicated in the introduction, implementation of the TPQ condition within a purely
CDME context (i.e. directly solving it and generating equation (62)) is not possible, at this time,
for multidimensional systems. As such, in the following sections we implement a different
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strategy applicable to multidimensional systems which, nevertheless, adheres to the spirit of
the present analysis. That is, working within the TJHW wavefunction representation, we will
impose the TPQ conditions and discriminate between spurious and physical configurations by
assessing how well they satisfy the CDME relations (scale by scale).

6. A convenient implementation of TPQ

The preceding formalism defines an exact wavelet analysis for quantizing physical systems
based on the generation of all the CDME basic solutions. As noted, this is particularly
difficult to implement for multidimensional problems. Fortunately, an alternate approach
exists which adheres to the underlying theoretical framework defined in the previous section.
Specifically, we will utilize the wavefunction representation developed within the moment
space quantization formulation of TJHW (1998a, b).

The TJHW (multidimensional) analysis tells us that the wavefunction can be expressed as

9(x) =
∞∑
n=0

An[E;−→µ ](−∂x)nR(x) (70)

where R(x) is some convenient reference function (i.e. Gaussian, etc). TheAn
coefficients are linearly dependent on the (infinite-scale, zero-translation) missing moments,
{µ(0), . . . , µ(ms)}, previously defined:

An[E;−→µ ] =
ms∑
`=0

Dn,`(E)µ(`). (71)

TheDn,`(E) are determinable, algebraically, as follows. From the Fourier transform for
the wavefunction

9̂(k) = 1√
2π

∫
dx e−ikx9(x) (72)

the ensuingk-power series becomes

9̂(k) = 1√
2π

∞∑
p=0

µ(p)

p!
(−ik)p. (73)

From the underlying moment equation for theµ(p), we have

µ(p) =
ms∑
`=0

ME,ε(p, `)µ(`) (74)

wherep > 0 andME,ε(`1, `2) = δ`1,`2, for 06 `1, `2 6 ms .
We can transform the Fourier power series expansion into

9̂(k) =
( ∞∑
n=0

An[E;−→µ ](−ik)n
)
R̂(k) (75)

for an appropriateR̂(k), with an analytic inverse atk = 0. The functions{knR̂(k)|n > 0}
are required to be complete within the Fourier representation. Upon expanding9̂(k)

R̂(k)
, one

obtains theAn as linear functions of the missing moments; thereby generating equation (71).
The inverse Fourier transform of the above representation gives us the configuration space
expansion in equation (70).

Let us define the truncated TJHW representation,

9(N)(x) ≡
N∑
n=0

An[E,−→µ ](−∂x)nR(x). (76)
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An important property of the truncated representation is that it yields, exactly, all the moments
up to orderN (i.e.µ(p) = ∫ dx xp9(N)(x), for p 6 N ):

µ(p) =
p∑
n=0

An[E,−→µ ]
p!

(p − n)! σ(p − n) (77)

whereσ(j) = ∫ dx xjR(x).
We can compute its wavelet transform according to

W9(N)(a, b) = 1√
a

∫
dxW

(
x − b
a

)
9(N)(x) (78)

=
N∑
n=0

An[E;−→µ ](−1)nWR(n)(a, b) (79)

where

WR(n)(a, b) = 1√
a

∫
dxW

(
x − b
a

)
∂nxR(x). (80)

Imposing the TPQ condition, we obtain

W9(N)(as, τ`(E)) = 0 (81)

or (substituting equation (71))

det(1[E;N, as ]) = 0 (82)

where

1`1,`2[E;N, as ] =
N∑
n=0

Dn,`2(E)(−1)nWR(n)(as, τ`1(E)). (83)

We shall use the notation9(N)(x) to denote theN th-order TJHW representation, while9(N)
as
(x)

denotes the specific configuration resulting from solving the above TPQ equations at scaleas .
When as = 0, equation (81) is equivalent to (i.e. implicitly assumingW(x) =

−N ∂2
xe−Q(x))

∂2
τ 9

(N)(τ`(E)) = 0 (84)

or

det(1̃[E;N ]) = 0 (85)

where

1̃`1,`2[E;N ] =
N∑
n=0

Dn,`2(E)(−∂τ )n+2R(τ`1(E)). (86)

7. The double-well quartic anharmonic oscillator

Consider the quartic anharmonic double-well oscillator,

−ε∂29(x) + (Z2x2 + x4)9(x) = E9(x). (87)

The associated (infinite-scale, zero-translation) moment equation is

µ(p + 4) = −Z2µ(p + 2) +Eµ(p) + p(p − 1)εµ(p − 2) (88)

for p > 0. This corresponds to a fourth-order finite-difference equation in which the energy,
E, appears as a parameter. The missing moments correspond to{µ(`)|0 6 ` 6 ms = 3}.
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Specification of these determines all the other moments. In general, all the moments are
linearly dependent on the missing moments. This is expressible as

µ(p) =
ms∑
`=0

ME,ε(p, `)µ(`) (89)

where

ME,ε(`1, `2) = δ`1,`2 (90)

for 0 6 `1, `2 6 ms . In this work, we do not have to specify a normalization condition
(although in previous works we adopted

∑ms
`=0µ(`) = 1).

TheME,ε(p, `) satisfy the moment equation with respect to thep index, for fixed`.
Combined with the initial conditions given above, theME,ε can be easily generated.

The fourth-order nature of the finite-difference moment equation is not affected by the
value ofε. Thus, whenε = 0, the finite-difference equation becomes

µ0(p + 4) = −Z2µ0(p + 2) +Eµ0(p) (91)

and has the general solution

µ0(p) =
ms∑
`=0

A`(τ`(E))p (92)

where theA` are arbitrary and the turning point, energy-dependent functions satisfy

(τ`(E))
4 = −Z2(τ`(E))

2 +E (93)

(i.e.V (τ`(E)) = E), resulting in

τ 2
` = −

Z2

2
±
√
E − Vmin (94)

whereVmin = −Z4

4 . We adopt the turning point function indexing:

τ`(E) =



−
√
−Z

2

2
+
√
E − Vmin, ` = 0

−
√
−Z

2

2
−
√
E − Vmin, ` = 1

+

√
−Z

2

2
−
√
E − Vmin, ` = 2

+

√
−Z

2

2
+
√
E − Vmin, ` = 3.

(95)

Note thatτ0(E) = −τ3(E) and τ1(E) = −τ2(E). Physical bound states must satisfy
E > Vmin, therefore bothτ0,3(E) will be real functions, so long asZ2 < 0 (we will be
investigating the caseZ2 = −5). The other two turning point functions can be complex.

We now derive the structure of the moment equation, for the generalized moments
µα,b(p) =

∫
dx xpe−Q(αx)9(x + b), recall α ≡ 1

a
. Upon translating the corresponding

Schrodinger equation by an amountb, we obtain

−ε∂2
x9(x + b) + (Z2(x + b)2 + (x + b)4)9(x + b) = E9(x + b). (96)

Defining8(x) ≡ e−Q(αx)9(x + b), and making the appropriate substitutions we obtain

−ε(∂2
x + 2αQ′(αx)∂x + α2[Q′′(αx) + (Q′(αx))2])8(x)

+(Z2(x + b)2 + (x + b)4)8(x) = E8(x). (97)

So long asQ is an asymptotically positive polynomial, and equation (49) is satisfied, the
ensuingµα,b(p)-moment equation will be analytic inε. From JWKB analysis, we know that
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the asymptotic form for the physical states is9(x)→ e−
1
3 |x|3. Therefore, takingQ(x) = x2

2 ,
satisfies equation (49). The corresponding generalized moment equation is

µα,b(p + 4) = −4bµα,b(p + 3)

−[6b2 +Z2 − εα4]µα,b(p + 2)− [4b3 + 2Z2b]µα,b(p + 1)

+[E − b4 − Z2b2 − εα2(2p + 1)]µα,b(p) + εp(p − 1)µα,b(p − 2) (98)

wherep > 0. We can transform this linear, fourth-order finite-difference equation into the
representation

µα,b(p) =
ms=3∑
`=0

Mα,b,E,ε(p, `)µα,b(`) (99)

involving readily derivableM function coefficients which are analytic in all the dependent
variables.

The corresponding set of coupled moment differential equations is obtained by recognizing
that

∂αµα,b(p) = −αµα,b(p + 2) (100)

or

∂αµα,b(p) =
ms=3∑
`=0

Mp,`(α, b, E, ε)µα,b(`) (101)

whereMp,`(α, b, E, ε) = −αMα,b,E,ε(p + 2, `).
Since all the moments are linearly dependent on the{µα,b(`)|0 6 ` 6 3}, we can limit

the above differentiation to these generalized missing moments:

∂α


µα,b(0)
µα,b(1)
µα,b(2)
µα,b(3)

 =


0, 0,−α, 0
0, 0, 0,−α

M2,0,M2,1,M2,2,M2,3

M3,0,M3,1,M3,2,M3,3



µα,b(0)
µα,b(1)
µα,b(2)
µα,b(3)

 . (102)

The Mexican hat wavelet transform

WMH9(a, b) ≡
∫

dxWMH

(
x − b
a

)
9(x) (103)

whereWMH(x) = −NMH∂2
x exp(− x2

2 ), can be written in terms of the generalized moments:

WMH9(a, b) = NMH(µα,b(0)− α2µα,b(2)). (104)

In order to implement the TJHW/TPQ analysis, we adopt the reference function

R̂(k) = e−βk
2

β = 1
2 (105)

with a configuration space counterpart

R(x) = 1√
2β

exp

(
− x

2

4β

)
. (106)

It should be noted that the choice ofR is not dictated by the choice of scaling function,Q.
We adopt the above reference function because of its convenience. Also, althoughβ will be
taken to be1

2, the TJHW formalism allows for variableβ values; therefore, we make explicit
the reference to this parameter.

The generation of the required TJHW representation procedes as follows. We first equate
thek-expansion of the Fourier transform of9 with the general TJHW representation:

1√
2π

∞∑
p=0

µ(p)

p!
(−ik)p =

∞∑
n=0

An[E;µ](−ik)nR̂(k) (107)
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yielding (note that 1
R̂(k)
= e−β(−ik)2)

An[E;µ] = 1√
2π

∑
2j+p=n

(−β)j
j !

µ(p)

p!
. (108)

Upon inserting equation (89) we obtain

An[E;µ] = 1√
2π

ms∑
`=0

Dn,`(E)µ(`) (109)

where

Dn,`(E) =
∑

2j+p=n

(−β)j
j !

ME,ε(p, `)

p!
. (110)

Since the TJHW representation, for some sufficiently large-orderN , is capable of
representing the physical solution, we can impose the TPQ conditions. This requires that
we evaluate the appropriate wavelet transform for theN th-order TJHW representation:

W9(N)(a, b) =
N∑
n=0

An[E;µ](−1)nWR(n)(a, b). (111)

For the case of the Mexican wavelet transform we have

WR(n)(a, b) = −(2β)− 1
2

√
πa2

γ
∂
(n+2)
b exp

(
− b2

4β + 2a2

)
(112)

whereγ 2 = 1
2a2 + 1

4β .
Since the convergence of the signal-wavelet inversion relation is fastest at the turning

points, the TPW condition is applied at moderately smallas scale values:
W9(N)(as, τ`(E)) = 0 (113)

which becomes
ms=3∑
`2=0

( N∑
n=0

Dn,`2(E)(−1)nWR(n)(as, τ`1(E))

)
µ(`2) = 0 (114)

for 06 `1 6 ms = 3. The determinantal equation is
det(1(as, E;N)) = 0 (115)

where

1`1,`2(as, E;N) =
N∑
n=0

Dn,`2(E)(−1)nWR(n)(as, τ`1(E)). (116)

The E-root solutions to these equations, for givenN , will be denoted byEr(as). The
corresponding (infinite-scale, zero-translation) missing moments will be denoted byµEr(as )(`).

In the caseas = 0, the corresponding asymptotic form for the wavelet transform expression
shows thatWR(n)(as = 0, b) ∝ ∂bR(n+2)(b). The preceding formalism then takes on the simple
structure

∂2
τ 9

(N)(τ`(E)) = 0 (117)
for 06 ` 6 ms , or

ms=3∑
`2=0

1̃`1,`2(E;N)µ(`2) = 0 (118)

corresponding to
det(1̃(E;N)) = 0 (119)

where

1̃`1,`2(E;N) =
N∑
n=0

Dn,`2(E)(−1)n∂(n+2)
τ R(τ`1(E)). (120)

The energy roots to these equations,Er(0), will be referred to asEr .
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8. Numerical results for the double-well quartic anharmonic potential

We limit our numerical analysis to the ground state problem only, for simplicity. We investigate
the Hamiltonian parameter case defined byε = 1 andZ2 = −5.

In table 1 we show the results of the TPQ strategy corresponding to (i.e.as = 0)
∂2
τ 9

(N)(τ`(E)) = 0. At each of the respective orders,N = 20, 30, 40, spurious solutions
appear, in addition to the correct physical ground state energy valueEr = −3.410 1428
(N = 40). Even though the spurious solutions show no clear convergence pattern (as opposed
to the relatively rapid convergence of the physical energy value), we focus on implementation
of the previous theory in order to confirm the identification of the ground state energy.

In figure 1, we plot all the root branches ensuing from implementing the basic TPQ
equationW9(N)(as, τ`(E)) = 0. We takeN = 40. By themselves, these plots do not allow
us to judge which is the physical root. Indeed, the spurious roots appear at scales larger than
the scale at which the true physical branch first appears. In order to select the physical branch,
we must determine the extent to which the underlying TJHW configurations satisfy the CDME
relations in equation (102). As explained earlier, this analysis corresponds to a scale by scale
verification (proceeding from the largest to the smallest possible scale) that the Schrodinger
equation is being satisfied.

At the scale valueas , the corresponding energy roots,Er(as), and associated missing
moment values generate the TJHW configuration (9

(N)

Er (as )
≡ 9(N)

as
)

9
(N)

Er (as )
(x) =

N∑
n=0

An[Er(as),−→µ Er(as )
](−∂x)nR(x). (121)

Using this configuration, we can numerically generate the moments

µα,b,Er (as )(`) =
∫

dx x`e−
1
2 (

x
a
)29

(N)

Er (as )
(x) (122)

and determine the critical (minimum) scale,ac(N, r, as), for which these moments (or
equivalently9(N)

Er (as )
(x)) satisfy equation (102) at any one of the turning pointsτ`v (Er(as)).

This in turn allows us to implement the discrimination procedure explained in the introduction.
In order to determineac(N, r, as), we procede as follows. Since

∂αµα,b,Er (as )(`) = −αµα,b,Er (as )(` + 2) (123)

all we must check is if

µα,b,Er (as )(p) =
3∑

`v=0

Mα,b,Er (as ),ε(p, `v)µα,b,Er (as )(`v) (124)

for p = 4, 5, at both (positive) turning pointsb = τ2,3(Er(as)). Because of the underlying
symmetry we haveτ0(E) = −τ3(E), andτ1(E) = −τ2(E). Thus, we do not have to check
these.

Let

R(p, α, b,Er(as)) ≡ 1−
∑3

`v=0Mα,b,Er (as ),ε(p, `v)µα,b,Er (as )(`v)

µα,b,Er (as )(p)
. (125)

Define

δ(a, Er(as)) =
3∑
`=2

5∑
p=4

(
R

(
p,

1

a
, τ`(Er(as)), Er(as)

))2

. (126)

We defineac(N, r, as) by determining the smallest scale,a, satisfyingδ(a, Er(as)) 6 10−4.
That is, this inequality is satisfied forac 6 a <∞.
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Figure 2. The critical scale,ac, up to which the
TJHW/TPQ solutions satisfy the CDME:9TJHW(x) =
R(x) +Aac (x). The projected configurations,R(x) and
Aac (x), each involve a DCWT multiscale representation
with scale contributions in the range 0< a < ac and
ac 6 a <∞, respectively.

Figure 3. The dyadic DCWT terms for the TJHW/TPQ
(ground state) solutions corresponding to the potential
functionV (x) = −5x2 + x4. The support interval for
the spurious (unphysical) solutions(2−7 < a < 20) does
not significantly overlap with the critical scale interval
[ac ≈ 0.8,∞) determined in figure 2; therefore the
remainder, ‘noise’, configurationR(x), is significant.
The support interval for the physical solution, given in
the inset(2−2 < a < 26), does significantly overlap
with the critical scale interval [ac = 0.4,∞) given in
figure 2; therefore the correspondingR(x) is small, and
9TJHW(x) ≈ Aac (x), confirming the correct physical
representation.

In figure 2 we give the approximateac value for various TPQ roots. We see that along the
physical branch (that leading to the correct physical valueEr(0) = −3.410 1428) theac critical
values become progressively smaller, although we obtainac → O(0.4) asas → 0. Instead, for
each of the other unphysical branches,ac remains approximately constant,ac ≈ O(0.8), even
asas → 0. In principle, asN →∞, for physical solutions, one expectsac → as , particularly
asas → 0.

As noted in the introduction, we can decompose the TPQ generated configuration (for
as = 0)

9
(N)
0 (x) = R(x) +A(x) (127)

whereA(x) is the DCWT wavelet projection corresponding to scales greater than, or equal to,
ac. R(x) is made up of wavelet transform contributions for scale 0< a < ac. In figure 3 we
plot the expression (from equation (35)),

T (τ`(Er); l, 0) = 1

ν

D(0)√
ρl
W9(ρl, τ`(Er)) (128)

involving the wavelet transform for each of the TPQ generated configurations at the larger of
the two positive turning points,τ3(E) (i.e.W9(N)(a, τ3(Er))).

We see that for the unphysical branches, the DCWT transform evaluated ata = 2l , peaks
arounda = 2−2 = 1

4. This is much smaller than the typicalac value for the unphysical

branches,ac ≈ 0.8. Thus the correspondingR(x) is significantly large, making9(N)
0 (x) not

be a solution to the Schrodinger equation.
In contrast, theW9(N)(a, τ3(Er)) for the physical TPQ configuration, peaks around

a = O(22), which lies within the interval (ac = 0.4,∞). Consequently, the corresponding
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Figure 4. (Spurious) TJHW/TPQ solution,9, for

Er(0) = −5.888: comparison of9
′′(x)
9(x)

with (V (x) −
Er(0)).

Figure 5. (Spurious) TJHW/TPQ solution,9, for
Er(0) = −5.888: comparison of9 ′′(x) with (V (x) −
Er(0))9(x).

Figure 6. (Spurious) TJHW/TPQ solution,9, for

Er(0) = −5.049: comparison of9
′′(x)
9(x)

with (V (x) −
Er(0)).

Figure 7. (Spurious) TJHW/TPQ solution,9, for
Er(0) = −5.049: comparison of9 ′′(x) with (V (x) −
Er(0))9(x).

remainder configuration,R(x), does not contain any (relatively) significant DCWT wavelet
components (i.e. it is a small remainder configuration), and thus9

(N)
0 (x) is close toA(x),

which satisfies the Schrodinger equation up to the scaleac.
The above behaviour is also repeated if we generate the DCWT relative to the smaller of

the two positive turning points,τ2.
In figures 4–13 we check the accuracy to which the TPQ configurations,9

(N)
0 (x), satisfy

the Schrodinger equation by comparing∂
2
x9

(N)
0 (x)

9
(N)
0 (x)

and(V (x)−Er). We also compare∂2
x9

(N)
0 (x)

with (V (x) − Er)9(N)
0 (x). This is done for both physical and spurious solutions. It is very

clear that only for the physical solution is there agreement with the Schrodinger equation. The
spurious solutions deviate significantly.
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Figure 8. (Spurious) TJHW/TPQ solution,9, for

Er(0) = −3.503: comparison of9
′′(x)
9(x)

with (V (x) −
Er(0)).

Figure 9. (Spurious) TJHW/TPQ solution,9, for
Er(0) = −3.503: comparison of9 ′′(x) with (V (x) −
Er(0))9(x).

Figure 10. (Spurious) TJHW/TPQ solution,9, for

Er(0) = −1.709: comparison of9
′′(x)
9(x)

with (V (x) −
Er(0)).

Figure 11. (Spurious) TJHW/TPQ solution,9, for
Er(0) = −1.709: comparison of9 ′′(x) with (V (x) −
Er(0))9(x).

The preceding analysis serves to discriminate between the physical and unphysical
(spurious) solutions. We are also interested in identifying modifications to the TPQ prescription
that only generate physical approximants (no spurious states generated).

9. ‘Noise’ filtering and CWT/DCWT

As detailed in the previous section, the numerical implementation of the TPQ strategy, within
the TJHW representation, yields excellent physical energy values and configurations, in
addition to spurious, unphysical, results.

Despite the effectiveness of the described, wavelet-based, procedure for discriminating
between physical and unphysical solutions, it is preferable to have a TPQ-based quantization
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Figure 12. (Physical) TJHW/TPQ solution,9, for

Er(0) = −3.410: comparison of9
′′(x)
9(x)

with (V (x) −
Er(0)).

Figure 13. (Physical) TJHW/TPQ solution,9, for
Er(0) = −3.410: comparison of9 ′′(x) with (V (x) −
Er(0))9(x).

method that does not generate any spurious solutions. To put this in proper perspective,
reconsider the previously defined decomposition

9(N)
as
(x) = R(x) +A(x). (129)

The configurationA(x) corresponds to the wavelet space projection (for the smallest possible
scale,ac) that satisfies the CDMEs. As previously noted, the CDMEs are equivalent to a
wavelet transformation of the Schrodinger equation. The remainder,R(x), may be considered
as ‘noise’.

Whereas9(N)
as
(x) satisfiesW9(as, τ`) = 0 (which is an approximation to∂2

τ 9
(N)
as
(τ`) =

0), this may not be the case (even approximately) forA(x). It will, however, if the noise is
small. The analysis previously described, in the context of figure 3, uses wavelet transforms to
assess whether the noise is small or not. If the noise is small, then9(N)

as
(x) defines a physically

consistent approximation (including the associated energy), because it will both satisfy the
Schrodinger equation (to scaleac) and approximately satisfy the TPQ condition.

In the case of unphysical TPQ configurations, significant short-scale noise contributions
generate unphysical9(N)

as
(x) which do not satisfy the Schrodinger equation. We would like to

modify the TPQ strategy so that these solutions do not appear from the outset.
In the following discussion, all references toE will implicitly refer to Er(as).
From the numerical results presented in the previous section, for both physical

and unphysical9(N)
as
(x) configurations,∂2

x9
(N)
as
(x) is proportional tox − τ`(E), in the

neighbourhood of the turning point(s),τ`(E). Refer to figures 5, 7, 9, 11 and 13. This is
precisely what the TPQ conditionW9(as, τ`(E)) = 0 suggests. That is∫

dx e−
(x−τ`(E))2

2a2 ∂2
x9

(N)
as
(x) = 0 (130)

or ∫
dx ∂2

xe−
(x−τ`(E))2

2a2 9(N)
as
(x) = 0 (131)

(a arbitrarily small,as fixed) which is equivalent toWMH9
(N)
as
(a, τ`(E)) = 0, in terms of the

Mexican hat mother wavelet.
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Also, as previously noted, for these same configurations the expression(V (x)−E)9(N)
as
(x)

will be proportional tox − τ`(E) only for the physical solution (refer to figures 5, 7, 9, 11
and 13, for the caseas = 0). Therefore,∫

dx e−
(x−τ`(E))2

2a2 (V (x)− E)9(N)
as
(x) = 0 (132)

only for the physical configuration.
From the above general discussion, it would appear that a suitable modification of the

TPQ conditions, capable of removing (ab initio) the unphysical, spurious, solutions, is∫
dx e−

(x−τ`(E))2
2a2 (H− E)9(N)(x) = 0 (133)

for each of thems + 1 turning points, and moderately small scale parameter values. (If the
Hamiltonian contains a rational fraction potential,V = PN

PD , then these equations would be
modified by the denominator polynomial,(H − E) → PD(H − E).) Clearly, if a is very
small, the above conditions become the previous TPQ conditions.

However, these modified TPQ equations also lead to different types of spurious solutions
(besides also generating the physical solutions). Indeed, there is nothing unique about the
turning points in satisfying equation (133). The only way of defining a TPQ condition that
filters out the unphysical solutions is to combine the above with the original TPQ conditions.

Specifically, for the double-well quartic anharmonic oscillator, imposing

WMH9
(N)(as, τ ) = 0 (134)

and ∫
dx e−

1
2 (

x−τ
a
)2(V (x)− E)9(N)(x) = 0 (135)

for τ restricted to the set{±τ2(E))} or the set{±τ3(E)}, filters out the spurious energies and
only generates physical approximants. The results duplicate those in table 1, with respect to
the physical energy. Clearly, both of these equations are demanding that around each of the
turning points, for sufficiently small scales, the scaling transform for the kinetic energy and
the(V − E) terms be zero.

10. Other examples

The double-well quartic anharmonic oscillator, for the Hamiltonian parameter values reported,
involve real value turning points. That is, for the ground state (Z2 = −5), we could restrictE
to the intervalE > Vmin and−Z2

2 >
√
E − Vmin. For the pure quartic anharmonic oscillator,

V (x) = x2 + x4, and the rational fraction potentialV (x) = x2 + 0.1x2

1+0.1x2 , one must work with
complex turning point functions,τ`(E). We implemented the TJHW/TPQ analysis with respect
to the (as = 0) formulation given in equations (117)–(120). In all cases, spurious energies
were detected; however, as exhibited in table 1, the physical state energy values (including
excited states) exhibited rapid convergence properties. These are reported in table 2. The
results are consistent with values reported by TJHW (1998a, b).

In addition to the preceding three one-dimensional problems, we also addressed the case of
the two-dimensional problem (Vrscay and Handy 1989)V (x, y) = x2 + y2 + (xy)2. Clearly,
multidimensional systems involve turning hypersurfaces. We briefly outline the essential
procedures for implementing the TPQ prescription for this system. As in the one-dimensional
cases, spurious states were also detected. The rapid convergence of the physical ground state
value (as the order of the calculation increase), allowed us to identify the physical solution as
well. This is given in table 2.
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Table 2. Quantization results for various potentials.

V N(L∗) Egr Eexc

x2 + x4 40 1.392 351 642 8.655 049 961

x2 + 0.1x2

1+0.1x2 40 1.043 173 726 5.181 094 75

x2 + y2 + (xy)2 11∗a, 13∗b 2.195 917a 7.031 248b

We outline the basic steps for the two-dimensional problem,

−∇29 + (x2 + y2 + (xy)2)9 = E9. (136)

The corresponding moment equation (for ground state symmetry solutions) is

u(p + 1, q + 1) = Eu(p, q)− u(p + 1, q)− u(p, q + 1)

+[2p(2p − 1)]u(p − 1, q) + [2q(2q − 1)]u(p, q − 1) (137)

whereu(p, q) = ∫
dx dy x2py2q9(x, y). The missing moments correspond to the infinite

set ({u(`, 0)|0 6 ` < ∞}), although at any given order a finite number are required. A
more detailed discussion of the missing moment structure of this problem can be found in the
references.

Within our TJHW/TPQ formalism, the turning points become ‘turning hypersurfaces’
(TH(E)), defined byV (−→τ ) = E. Since the two-dimensional version of the TJHW
representation converges to the physical solution, we are free to impose∇29(−→τ `) = 0 on a
reasonable (‘multiscale’) distribution of points,−→τ `(E) ∈ TH(E).

Let

−→τ ` = |τ(E, θ`)|(cos(θ`), sin(θ`)). (138)

Implementing our analysis toLth order (i.e. involving theL+1 missing moments:{u(`, 0)|06
` 6 L}), we evenly divide the angular interval [0, π4 ] (because of the implicitx ↔ y symmetry)
intoL subintervals whose endpoints define theθ`.

For arbitraryE, at eachθ` we determine the|τ(E, θ`)| that intersectsTH(E). We then
solve the determinantal condition ensuing from taking∇29(−→τ` (E)) = 0, on the appropriate
TJHW (two-dimensional) representation. AsL increases, we can identify the physical values
quoted in table 2.

For this problem,TH, is bounded. AsL → ∞ the density of turning points chosen, on
the turning hypersurface, increases. Clearly, a better selection strategy for distributing the−→τ`
onTH(E) should improve the convergence rate. This is beyond the scope of this paper.

11. Conclusion

We have defined a TPQ formalism which makes use of a recently developed wavefunction
representation (i.e. TJHW analysis). This procedure, while generating accurate physical
values, also generates spurious, unphysical solutions. By applying wavelet based methods
(within the context of the HM moment-wavelet formalism) we are able to discriminate between
the physical and unphysical solutions. The importance of the method presented is that
because it involves a multiscale formalism for analysing localized structures (i.e. turning point
behaviours) it is the natural complementing quantization prescription that can take advantage
of what wavelet analysis was designed to do: address the multiscale behaviour of localized
structures.
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